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 Abstract 

Objective: to investigate the effects of moderate and severe exercise on hepatic injury induced by 

renal ischemia reperfusion (IR) in male albino rats. Methods: 40 male albino rats were divided 

into 4 groups (10 rats each): sedentary sham-operated-control, sedentary renal IR group, moderate 

exercise-IR group and severe exercise-IR group. In the last two groups, swimming exercise 

protocol performed for 6 weeks, then rats were subjected to renal IR. At the end of experiment, 

serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and liver 

levels of malondialdehyde (MDA), superoxide dismutase (SOD), reduced glutathione (GSH), 

catalase (CAT),  caspase-3 activity and TNF-α were assessed. Results: renal IR caused non-

significant increase in the levels of ALT and AST with significant increase in hepatic MDA and 

TNF-α levels, while SOD and GSH levels showed significant decrease. CAT and caspase-3 

showed insignificant change in IR group compared to sham group. Moderate exercise prior to 

renal IR showed insignificant decrease in ALT and AST levels, significant decrease in  hepatic 

MDA and TNF-α levels, significant increase in hepatic SOD, GSH and CAT and non-significant 

change in caspase-3 compared  to renal IR sedentary group. On the other hand, severe exercise 

prior to renal IR showed significant increase in ALT and AST levels, also hepatic MDA and 

TNF-α levels were significantly increased, while, hepatic SOD and GSH levels significantly 

decreased as compared to renal IR sedentary group, CAT levels insignificantly increased as 

compared to renal IR sedentary group. Caspase-3 insignificantly increased as compared to renal 

IR sedentary group but showed significant increase when compared to sham control group.          

Conclusions: Moderate exercise swimming ameliorates hepatic injury induced by renal IR by its 

antioxidant and anti-inflammatory effects. While, severe exercise deteriorates the hepatic injury 

induced by renal IR by increasing the oxidative stress.    
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INTRODUCTION  

Liver and kidney are important regulators of body 

homeostasis and are involved in excreting the 

toxic products of metabolism and exogenous drugs 

(1). Any injury to either the renal or liver tissue 

may affect the other (2). 

Reactive oxygen species (ROS) and nitric oxide 

(NO) play an important role in mediating cell 

damage during ischemia reperfusion (IR) 

injury(3). Inflammation contributes to the 

pathogenesis of IR with a central role for particular 

cells, adhesion molecules, and cytokines (4). 

Neutrophils are the inflammatory cells, which 

produces abundantly ROS during IR injury (5). 

Renal IR causes tissue injury by oxygen radicals 

and oxidative stress caused by an imbalance 

between production of ROS and antioxidant 

capacity (6,7). 

Liver injury is one of the distant-organ damages 

induced by renal IR. Acute renal failure associated 

with liver disease is a commonly encountered 

clinical problem of varied etiology (8). It is 

believed that IR injury induces inflammatory 

response, which elicits tissue damage in a number 

of organs in which reactive oxygen and nitrogen 

species play a key role in the pathophysiology of 

tissue injury (9,10). It has been demonstrated that 

renal IR injury might cause liver oxidative stress 

and increase lipid peroxidation in liver tissue (11).   

Apoptosis is a physiological, highly organized and 

genetically programmed form of cell death which 

contributes to body homeostasis by removing aged 

and damaged cells(12). Thus, apoptosis represents 

a protective defense mechanism against a number 

of harmful factors including viral attacks and 

carcinogens (13). However, aberrant hepatocyte 

apoptosis may induce hepatic injury and disease 

progression via up-regulation of inflammation and 

fibrosis (14).  

Exercise training has various effects on hepatic 

function (15). In rats, training modulates 

antioxidant enzymes in the liver, reducing 

oxidative damage (16). Regular physical activity 

reduces the risk of cardiovascular disorders, 

diabetes, obesity, cancer and premature death (17). 

However, the beneficial effects of physical activity 

are lost with exhaustion (18). Severe exercise 

training represents a physical stress that disrupts 

homeostasis (19), and the working skeletal muscle 

is clearly the organ most directly affected during 

physical activity (20). 

Previous studies indicate that exercise may induce 

structural damage to muscle cells (21), and the 

production of metabolic by-products, such as 

lactate (22), and ROS (23). The metabolic 

adaptations to exercise are not restricted to the 

working muscles, exercise also a major challenge 

to other organs such as cardiac muscle, stomach or 

brain (24). This is particularly relevant to the liver 

due to its central role in the maintenance of energy 

supply to the exercising muscle (25). 

Although, there were numerous previous studies 

aiming to evaluate the effects of exercise on liver 

functions and oxidative stress in liver, but there 

has been no study of the effect of moderate and 

severe exercise on liver injury induced by renal IR. 

So, this study designed to investigate the effects of 

moderate and severe swimming exercise on 

hepatic injury and apoptosis induced by renal IR in 

male albino rats 
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MATERIALS AND METHODS  

Animals: 

This study was carried out on 40 male albino rats 

weighing about (200-250gm) were housed under 

standard laboratory conditions at room 

temperature (24±2°C). The rats had free access to 

water and food.  

Experimental design: 

Rats were divided into four groups (10rats each): 

Sedentary sham-operated-control: rats in this 

group were subjected to sham operation; Sedentary 

renal IR group; rats in this group were subjected to 

renal IR; Moderate exercise-IR group: rats in this 

group performed moderate swimming exercise for 

6 weeks, then were subjected to renal IR; severe 

exercise-IR group: rats in this group performed 

severe swimming exercise for 6weeks, then they 

were subjected to renal IR.  

Induction of renal IR injury: 

According to Vaghasiya et al.,(1), the I/R to the 

kidneys was induced. Rats were anaesthetized with 

pentobarbital (40mg/kg) intraperitoneally. The 

abdominal region was shaved and sterilized. Rats 

were undergoing surgical exposure of the left and 

right renal pedicles via midline incision. To induce 

renal ischemia, both renal pedicles were occluded 

for 30 minutes with vascular clamps. After 30 min. 

of occlusion, the clamps were removed, and 

kidneys observed to undergo reperfusion for 24 

hours.  Sham-operated animals underwent 

identical surgical treatment, however, without 

occlusion of the renal pedicles.       

Swimming exercise protocol: 

Moderate swimming exercise protocol: the 

swimming exercise protocol was conducted 5 

times/week for 60 min/time for 6 weeks. The rats 

swam individually in water tank. The tank used in 

this study 80 cm in length, 50 cm in width and 

90cm in depth, and the swimming training was 

always performed in water temperature of 31±1ºC, 

between 10 to 12 h a.m.(26).  

Severe swimming exercise protocol: The 

exercise regimen for severe exercise-trained rats, 

the same as for moderate exercise-trained rats but 

to augment the exercise intensity, an external load 

was added to the animal; the animal carried a load 

of 50% body weight strapped to the chest in the 

second week. In the third and fourth training 

weeks, the animals performed the same exercise 

carrying a load of 60% body weight, and in the last 

two weeks, this load increased to 70% of body 

weight (27).       

Biochemical assays: 

At the end of experiment, rats were sacrificed and 

blood samples were collected for biochemical 

assays, and livers were quickly removed and kept 

frozen until assayed for oxidant and antioxidant 

parameters.  

The following parameters were determined: 

Liver function assay: 

Serum alanine aminotransferase (ALT) and 

aspartate aminotransferase (AST) were measured 

according to the method of Rei(28) . 

Estimation of lipid peroxidation and 

antioxidant enzymes: 

Liver was removed and kept in cold conditions 

until assayed. The tissue was homogenized, the 

clear supernatant was used for assays of lipid 

peroxidation (MDA content) according to 

Esterbauer and Cheeseman(29), superoxide 

dismutase (SOD) according to Marklund and 

Marklund (30), catalase (CAT) that determined by 

Aebi(31) and reduced glutathione (GSH) 

according to Nagi et al., (32)   
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Estimation of caspase-3 activity and TNF-α: 

Caspase-3 was measured by ELISA method 

according to(33), and TNF-α was determined by 

Endo et al., (34) 

Statistical analysis: 

The data were expressed as the mean ± standard 

deviation. Data from our study were analyzed 

using the unpaired student's t-test to assess 

significant difference between two groups. 

Statistical comparison between different groups 

was carried out by using one–way ANOVA. 

Significant results of analysis of variance were 

subjected to post hoc analysis (Tukey-Kramer 

multiple comparisons). P-values <0.05 were 

considered statistically significant. All the analyses 

were performed using Graph Pad Instat, 32 bit for 

win 95/NT (Version 3.05).   

 

Figure (1): Effect of moderate and severe exercise on liver function after induction of renal I/R injury in rats. 
*
P < 0.05 

vs sham-operated control group. 
#
P < 0.05 vs renal I/R group.

 $
P < 0.05 vs moderate exercise-I/R group. 

 

Statistical analysis: 

    The data were tabulated and analyzed by SPSS 

(statistical package for the social science software) 

using statistical package version 16 on IBM 

compatible computer. Quantitative data were 

expressed as mean ± standard deviation (X± SD). 

The data from control and test groups were 

compared using an independent sample t-test. 

Probability value of less than 0.05 was considered 

as statistically significant (*P<0.05). “n” indicates 

the number of tested rats. 

 

RESULTS 

 Effect of muscle exercise on liver function in 

renal IR    

As shown in table fig. (1), serum levels of ALT 

and AST were insignificantly increased in IR 

group as compared to the sham-operated control 

group (P> 0.05). Rats underwent moderate 

exercise prior to renal IR were exhibited 

insignificant decrease in the serum levels of ALT 

and AST as compared renal IR group and 

exhibited no significant change as compared to 

sham-operated group. While, rats that underwent 

severe exercise prior to renal IR showed 

insignificant change in serum levels of ALT and 

AST as compared to renal rats in sedentary IR 

group, but showed significant increase when 

compared to the sham-operated control group. 

 

Effect of muscle exercise on lipid peroxidation 

and antioxidant enzymes in renal IR    

Compared with sham-operated control group, liver 

MDA levels were significantly increased, while 



Effect of Exercise On Hepatic Injury 2ry to renal IR injury                                                                             164 

 

SOD and GSH levels were significantly decreased 

in IR group (P< 0.05). But, CAT levels 

insignificantly changed in IR group as compared 

to sham group fig. (2). 

 

   The MDA levels in liver tissue, was significantly 

decreased in rats that underwent moderate exercise 

prior to renal IR compared to rats in the sedentary 

IR group (P<0.05), but insignificantly changed as 

compared to sham-operated control group. While, 

rats that underwent severe exercise prior to renal 

IR were exhibited significant increase in the MDA 

levels compared to rats in the sedentary IR group, 

rats in sham-operated control group and rats in the 

moderate exercise IR group fig. (2). 

 

 

 

Figure (2): Effect of moderate and severe exercise on lipid peroxidation and antioxidant enzymes in the liver after 

induction of renal I/R injury in rats. *P < 0.05 vs sham-operated control group. #P < 0.05 vs renal I/R group. $P < 0.05 vs 

moderate exercise-I/R group 

 

    As regard SOD and GSH levels, both are 

significantly increased in rats underwent moderate 

exercise prior to IR as compared to the rats in the 

sedentary IR group, but they showed no significant 

difference if compared to the sham-operated 

control group. While, severe exercise prior to IR 

significantly decreased the levels of SOD and 

GSH as compared to rats in the sedentary IR   
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Table (1): Effect of moderate and severe exercise on caspase 3 activity and TNF-α in the liver after induction of renal I/R 

injury in rats 

Data are given as mean ± SD. aP < 0.05 vs sham-operated control group. bP < 0.05 vs renal I/R group.  cP < 0.05 vs 

moderate exercise-I/R group 

 

group, rats in sham-operated control group and rats 

in the moderate exercise IR group fig. (2). 

 

    Moderate exercised IR group showed a 

significant increase in CAT activity levels as 

compared to the sedentary IR group and  

 

 

insignificant increase as compared to sham-

operated group. But, in the severe exercised group, 

CAT activity levels were insignificantly changed 

compared to both the sedentary IR group and 

sham-operated group, and showed significant 

decrease if compared to the moderate exercise IR 

group. 

Effect of muscle exercise on caspase-3 activity 

and TNF-α in renal IR: 

Table (1) showed that caspase-3 was 

insignificantly increased in IR group as compared 

to sham-operated control rats (P>0.05). While, 

TNF-α was significantly increased in IR group in 

comparison with sham-operated group (P<0.05). 

 

    Table (1) showed that caspase-3 levels were 

insignificantly decreased in moderate exercised IR 

rats as compared to sedentary IR rats (P>0.05), and 

insignificantly changed as compared to sham-

operated control group. While, in the severe 

exercised group, there were insignificant increase 

in caspase-3 levels as compared to sedentary IR 

group. But, the increase became significant if 

compared to both the sham-operated rats and to the 

rats in the moderate exercise IR group. 

    TNF-α levels were significantly decreased in 

rats that underwent moderate exercise prior to 

renal IR group compared to rats in sedentary IR 

group (P<0.05) but, they showed no significant 

difference if compared to the sham-operated 

control group. While, rats that underwent severe 

exercise prior to renal IR were exhibited 

significant increase in the levels of TNF-α as 

compared to rats in the sedentary IR group, rats in 

sham-operated control group and rats in the 

moderate exercise IR group (table 1). 

 

DISCUSSION  

Renal IR injury is encountered in many clinical 

situations; transplantation, partial nephrectomy, 

sepsis, hydronephrosis, or elective urologic 

operations (35). At present, many studies have 

shown remote organ injury, including the liver, 

during renal IR(36). 

 

Parameters 

Group I 

Sedentary-sham 

control   

(n=10) 

Group II 

Sedentary- I/R 

(n=10) 

Group III 

Moderate 

exercise-I/R 

(n=10) 

Group IV 

Severe- 

exercise-I/R 

(n=10) 

Caspase 3 activity (nmol 

/mg protein) 

1.06±0.32 1.36±0.46 1.18±0.36 1.86±0.77
a,c 

TNF-α (pg/mg protein) 13.83±0.77 22.53±1.72
a 

15.15±1.81
b 

26.30±1.39
a,b,c 
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The liver plays a role in the physiology of exercise 

(16). Exercise has various effects on liver function, 

enhancing both nutrient metabolism and 

antioxidant capacity (37).  

The effect of exercise on health is paradoxical, 

because the formation of ROS induced by exercise 

may be detrimental for cellular functions (38). 

Strenuous exercise was shown to increase ROS 

mediated lipid peroxidation in the liver (39), 

skeletal muscle (40), myocardium (41), and lung 

tissue(42). On the other hand, exercise, while 

enhancing the generation of ROS, was suggested 

to activate the defense mechanisms that protect 

against detrimental effects associated with ROS 

(43).     

The present study demonstrated that renal IR leads 

to damage to the liver as remote organ. Our 

findings suggested that moderate exercise 

attenuates IR-induced liver functional injury, while 

severe exercise deteriorates the IR-induced liver 

functional injury. 

The present study showed that serum ALT and 

AST levels insignificantly increased after 

induction of renal IR as compared to sham control. 

But, we found significant higher MDA levels in 

the liver tissue after induction of renal IR injury as 

compared to sham-control, which is a major index 

of lipid peroxidation and oxidative stress. In the 

present study, renal IR leads to decreased levels of 

antioxidant enzymes in the liver tissue including 

GSH and SOD as compared to sham control, while 

CAT level insignificantly changed as compared to 

sham group. Also, the present work showed that 

30 min-renal ischemia, 24 hours reperfusion was 

enough to significantly increase TNF-α level in the 

liver as compared to those levels observed in the 

sham-control, while caspase-3 levels were 

insignificantly increased as compared to sham-

control. 

Several mechanisms are suggested to be involved 

in remote organ failure, but their exact 

pathophysiological roles are not completely 

understood (9,10). Chemokines and mitochondrial 

products activate neutophils to amplify remote 

liver injury during mouse acute renal failure (44). 

Renal IR results in uncontrolled expression of 

interleukin-17A(45). IL-17A is a pro-

inflammatory cytokine that causes recruiting 

neutrophils, activate T cells, and induces 

expression of other cytokines and chemokines 

such as TNF-α and IL-6 in liver tissue(46). It has 

been shown that TNF-α play an important role in 

early IR injury (44). 

TNF-α is a pro-inflammatory cytokine mainly 

produced from macrophages and monocytes and in 

the liver from Kupffer cells(47). It acts locally in a 

paracrine fashion but also at distant sites in the 

manner of hormones(44). Seteser et al(48), showed 

that renal IR increased the hepatic levels of TNF-

α. Increased oxidative stress and production of 

ROS in the liver that were shown in the present 

study are also thought to play a key role in 

triggering and maintaining the inflammatory 

response. MDA, an index of lipid peroxidation, 

was found to be increased in the liver after renal 

IR(49). In addition, hepatic glutathione, an 

important endogenous free radical scavenger with 

protective effects on the liver, was decreased(8). 

Administration of glutathione before renal IR 

decreased histological evidence of liver injury and 

MDA concentrations (8). 

The results of the present work demonstrated that 

moderate exercise for 6 weeks prior to renal IR 

insignificantly affect serum ALT and AST levels, 
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but caused significant decrease in MDA in liver 

tissue as compared to rats in sedentary renal IR 

group, antioxidant enzymes like SOD, GSH and 

CAT were significantly increased in the liver 

tissue in moderate exercised-IR group compared to 

sedentary IR group. Also, TNF-α levels were 

significantly decreased in moderately-exercised IR 

group, while caspase-3 level insignificantly 

changed as compared to sedentary IR group. 

In accordance to the results of the present work, 

Cakir et al.,(40) demonstrated that stress induced 

oxidative damage in the cardiac muscle, liver, 

stomach, and brain of sedentary rats that assessed 

by increased MDA levels, is ameliorated when the 

animals have previously swum at a moderate load 

for 8 weeks.    

 

It has been hypothesized that moderate regular 

exercise can be beneficial by up-regulating the 

protective activities against oxidative stress (50). 

Radak et al.,(51) showed that regular exercise 

attenuated the increased redox status, evaluated by 

glutathione level that showed more than a two-fold 

increase in GSH in exercised rats. 

The protective effect of exercise against stress-

induced oxidative damage of remote organs 

appears to involve the maintenance of GSH stores 

and an inhibitory action on tissue neutrophil 

recruitment, alleviating neutrophil-derived 

oxidative injury (23)  

In accordance to the results of the present work, 

some studies have shown that animals and humans 

clearly undergo significant adaptive responses to 

regular exercise which is permitted by reduction in 

oxidant production and increased antioxidant 

defenses (19,52). In this context, the liver plays a 

key role in stress-induced oxidative injury (53). 

For instance, liver is the major organ for de novo 

GSH synthesis, supplying 90% of the circulating 

GSH, which is one of the most important 

endogenous antioxidants(54) and plays an 

important role as a reducing agent(53) protecting 

the organism against hydrogen peroxide and lipid 

peroxides(52). Sun et al.,(53) found increased liver 

mitochondria GSH after 4 weeks of training 

exercise in rats, which was attributed to an 

increased antioxidant activity. Navarro et al.,(43) 

also reported that chronic moderate exercise 

increases mitochondrial SOD activity and 

decreased mitochondrial oxidation products in 

trained rat liver. In agreement to this view, 

Botezelli et al.,(55) have demonstrated that 8 

weeks of swimming training decreased lipid 

peroxidation, a fact partially attributed to an 

improved antioxidant system with greater SOD 

enzyme activity. 

The previous reports found no significant 

difference between tissue and isolated 

mitochondria measurements (53). Thus, no 

difference between GSH and MDA in tissue 

homogenate and isolated mitochondria have been 

observed following exercise training in rat(24).  

   Radak et al.,(56) investigated the activity of 

nuclear factor-kB (NF-kB) which is an important 

redox sensitive transcription factor that regulates 

various inflammatory  and immune responses. The 

binding activity of NF-kB in nuclear extracts to 

deoxyoligonucleotide with the responsive element 

reduced with the exercise regimen suggesting that 

regular exercise may attenuate the inflammatory 

processes (57). 

Additionally, it is interesting to note that proteins 

in cardiac muscles of rats subjected to regular 

swimming training for 9 weeks were more 
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resistant to an oxidative challenge of 

intraperitoneal injection of H2O2(57). Regular 

exercise increases antioxidant enzyme activities in 

rat skeletal muscles (18) and the liver (58), taken 

together, these results support the results of the 

present work that moderate exercise up-regulates 

protection against oxidative stress. 

Concerning antioxidant effects of exercise, a 

substantial body of evidence suggests that regular 

exercise plays an important preventive and 

therapeutic role in oxidative stress-associated 

diseases including ischemic heart disease (59), 

type II diabetes (60), and Alzheimer disease (61). 

The mechanism by which moderate exercise 

training exerts its anti-inflammatory effects has 

been largely focused on the effects of reduced 

adiposity and reduced release of adipose tissue-

derived inflammatory cytokines (62). Adipose 

tissue is recognized as a metabolically active tissue 

that plays a key role in the development of chronic 

low-grade inflammation (63). Adipose tissue is 

able to produce inflammatory cytokines such as 

TNF-α and IL-6 and several potent chemo-

attractant cytokines (62). The accumulation of 

monocytes as macrophages in adipose tissue is 

thought to be a major source of increased systemic 

concentrations of inflammatory cytokines (64). 

With this in mind, increased physical activity that 

results in a negative energy balance and 

consequently reduces adiposity, have been 

typically suggested as the main mechanism by 

which regular exercise exerts its beneficial effects 

on the level of inflammatory markers(65).  

The results of the present work showed that severe 

exercise-prior to the renal IR deteriorates the liver 

injury caused by renal IR manifested by significant 

increase in  serum ALT and AST and  hepatic 

MDA levels as compared to sedentary IR group, 

while, significant decrease of hepatic SOD and 

GSH as compared to sedentary IR group, but, CAT 

level insignificantly changed as compared to 

sedentary IR group and TNF-α in liver tissue 

showed significant increase as compared to 

sedentary IR group, while, caspase-3 

insignificantly increased as compared to sedentary 

IR group and showed significant increase when 

compared to sham control group.  

It is well known that exhaustion caused by 

exercise, especially when it occurs sporadically, 

leads to structural damage or inflammatory 

reactions within the muscles (41). This damage is 

due to, at least in part, to the production of ROS 

(66). Also, it was reported that ROS production by 

acute or chronic exercise may elicit different 

responses depending on the type of organ tissue 

and its levels of endogenous antioxidants (67). 

Severe exercise by increasing the oxygen 

consumption rate may result in oxidative stress in 

mitochondria. This results in an increased 

production of oxidants, which could be detrimental 

to the tissue (23). The liver is the organ situated at 

the border between the digestive and circulatory 

systems and their functions are not bound only by 

digestion (68). At level of the liver many 

biochemical cycles occur and they can result in 

free oxygen radicals (68). Physical training 

represents an important source of ROS 

development at the level of the organs directly 

involved in the activity and at the level of other 

organs because of the supplementary energetic 

needs and also of the oxygen consumption (69). 

In agreement with the results of the present work, 

Liu et al.,(67) have found that acute exercise 

induced increases in MDA content and decrease 
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glutamine synthetase activity in liver. Although 

regular moderate exercise training is known to 

increase the resistance against ROS induced lipid 

peroxidation, and to decrease the accumulation of 

oxidative proteins and DNA damage (70). 

However, severe exercise has been shown to 

induce formation of ROS and nitrogen species and 

the related oxidative damage (18). 

In support to the results of the present work, 

previous studies have identified elevation in blood 

oxidative stress markers after severe exercise (71). 

A number of potential pathways exist for exercise-

related oxidant production (70), as increase 

oxygen consumption several folds with exercise 

(72), tissue damage resulting from exercise which 

may induce the activation of inflammatory cells 

such as neutrophils, with subsequent production of 

free radicals (73). Several studies indicate that 

strenuous exercise augments oxidative stress and 

that exercise-induced oxidative stress may damage 

biological components e.g. lipids and proteins 

(18). However, the intensity, duration and 

frequency of exercise are important in determining 

stress level and preventing or deteriorating stress 

response (71).  

The results of the present work demonstrated that 

severe exercise prior to renal IR induced initiation 

of the apoptotic pathways as revealed by 

significant increase in the pro-inflammatory 

cytokine TNF-α levels and increased activity of 

caspase-3. Such apoptosis is probably triggered by 

mitochondrial permeability transition and ROS 

released by activated Kupffer cells (74). This leads 

to release of mitochondrial cytochrome c and 

activates caspase-9 which, in turn, activates 

caspase-3, the initiator of the final execution stages 

of nuclear apoptosis (75).       

Conclusions: 

Based on the current evidence demonstrating the 

key role of regular moderate physical activity in 

reducing and preventing the remote effects of renal 

IR and the associated oxidative stress in liver, 

moderate regular exercise may therefore prove 

effective as a non-pharmacological intervention in 

providing life-long protection against stress-

induced oxidative injury and in preserving 

antioxidant capacity of the non-muscle tissues as 

liver.         
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الملخص العربي 

 

ْٕ يعشفت حأريش انًًبسعت انًخٕعطت ٔانعُيفت نشيبضت انغببحت عهٗ ٳصببت انكبذ انُبحجت  يٍ َقص ٔٳعبدة انخشٔيت  : هدف هذا البحث

ببنكهٗ فٗ ركٕس انفئشاٌ انبيضبء 

 

أسبع يجًٕعبث حخكٌٕ كم يجًٕعت يٍ ٔقذ حى حقغيًٓى ٳنٗ انفئشاٌ انبيضبء يٍ ركٕس40حى إجشاء انبحذ عهٗ  :طرق البحث

: فئشا10ٌ

.  ْٗ انًجًٕعت انضببطت انخٗ لاحًبسط انشيبضت  ٔحى ٳجشاء جشاحت غيش حقيقيت نٓب:المجموعة الأولى

 ْٗ انًجًٕعت انخٗ لا حًبسط انشيبضت  ٔ حى ٳحذاد َقص ٔٳعبدة انخشٔيت  بكهيخيٓب :المجموعة الثانية

لأعببيع رى حى ٳحذاد َقص ٔٳعبدة انخشٔيت  6 ْٗ انًجًٕعت انخٗ حًبسط سيبضت انغببحت بشكم يخٕعظ نًذة :المجموعة الثالثة

. بكهيخيٓب

لأعببيع  رى حى ٳحذاد َقص ٔٳعبدة انخشٔيت  6ْٗ انًجًٕعت انخٗ حًبسط سيبضت انغببحت بشكم عُيف نًذة :المجموعة الرابعة

. بكهيخيٓب

فٗ َٓبيت انذساعت حى ربح انفئشاٌ ٔحجًيع عيُبث انذو نقيبط اَضيًبث انكبذ ٔأيضب حى أخز انكبذ ٔطحُّ نقيبط انًبنَٕذْيذ ٔانغٕبش 

.  ٔعبيم َخش انٕسو أنفب3-أٔكغيذ ديغًيٕحيض َٔشبط  انجهٕحبريٌٕ انًخخضل ٔانكبحبلاصٔانكبعبيظ 

 

 فٗ انًجًٕعت انخٗ حى اجشاء نٓب عًهيت َقص ٔٳعبدة انخشٔيت  بكهيخيٓب ٔجذ صيبدة فٗ يغخٕ٘ ٳَضيًبث انكبذ ٔكبَج ْزِ :نتائج البحث

انضيبدة نيغج راث دلانت ٳحصبئيت بيًُب صادث يغخٕيبث انًبنَٕذْبيذ ٔعبيم َخش انٕسو أنفب صيبدة راث دلانت احصبئيت أيب يغخٕيبث 

 فهى يخغيش حغيشا را دلانت 3-َشبط انغٕبشأٔكغيذ ديغًيٕحيض ٔانجهٕحبريٌٕ انًخخضل فقذ َقصج َقصب را دلانت ٳحصبئيت أيب انكبعبيظ

. احصبئيت ٳرا قٕسٌ ببنًجًٕعت  انضببطت

 أعببيع قبم ٳجشاء َقص ٔٳعبدة انخشٔيت بكهيخيٓب أدث انٗ 6ٔقذ أٔضحج انُخبئج أٌ يًبسعت سيبضت انغببحت بصٕسة يخٕعطت نًذة 

َقص فٗ يغخٕٖ ٳَضيًبث انكبذ ٔنكٍ ْزا انُقص نى يكٍ رٔ دلانت ٳحصبئيت كًب َقصج يغخٕيبث انًبنَٕذْبيذ ٔعبيم َخش انٕسو أنفب 

ٔكبٌ ْزاانُقص رٔ دلانت ٳحصبئيت أيب يغخٕيبث انغٕبشأٔكغيذ ديغًيٕحيض ٔانجهٕحبريٌٕ انًخخضل ٔانكبحبلاص فقذ صادث صيبدة راث 

 فهى يخغيش حغيشا را دلانت ٳحصبئيت ببنًقبسَت ببنًجًٕعت انخٗ لاحًبسط انشيبضت ٔحى ٳحذاد َقص 3-دلانت ٳحصبئيت أيب انكبعبيظ

. ٔٳعبدة انخشٔيت  بكهيخيٓب

 أعببيع قبم ٳجشاء عًهيت َقص ٔٳعبدة انخشٔيت  بكهيخيٓب ٔجذ 6أيب ببنُغبت نهًجًٕعت انخٗ يبسعج سيبضت انغببحت بصٕسة عُيفت نًذة 

صيبدة فٗ يغخٕٖ ٳَضيًبث انكبذ ٔكبَج ْزِ انضيبدة راث دلانت ٳحصبئيت كًب صادث يغخٕيبث انًبنَٕذْبيذ ٔعبيم َخش انٕسو أنفب صيبدة 

راث دلانت احصبئيت أيب يغخٕيبث انغٕبش أٔكغيذ ديغًيٕحيض ٔانجهٕحبريٌٕ انًخخضل فقذ َقصج َقصب راث دلانت ٳحصبئيت ببنًقبسَت 

 فقذ صاد صيبدة راث 3-أيب ببنُغبت نًغخٕٖ انكبعبيظ. ببنًجًٕعت  انخٗ لا حًبسط انشيبضت ٔ حى ٳحذاد َقص ٔٳعبدة انخشٔيت  بكهيخيٓب

دلانت ٳحصبئيت ببنًقبسَت ببنًجًٕعت انضببطت ٔنكٍ ْزِ انضيبدة نيغج راث دلانت ٳحصبئيت ارا قٕسَج ببنًجًٕعت انخٗ لا حًبسط 

انشيبضت ٔحى ٳحذاد َقص ٔٳعبدة انخشٔيت  بكهيخيٓب 

 

 ٳٌ يًبسعت انشيبضت بشكم يخٕعظ أدٖ انٗ ححغيٍ حبنت اعخلال انكبذ انُبحجت عٍ َقص ٔٳعبدة انخشٔيت ببنكهٗ ٔرنك عٍ :الخلاصة

طشيق حأريشْب انًضبد نلأكغذة ٔانًضبد نلٳنخٓبة ٔنكٍ يًبسعت َفظ انشيبضت بشكم عُيف أدٖ انٗ حذْٕس اعخلال انكبذ عٍ طشيق 

. صيبدة الأكغذة

 


